limx→0 (e^x-1)sinx/1-cosx
=limx→0[ (e^x))sinx+ (e^x-1)cosx]/sinx
=limx->0e^x+limx-0(e^x-1)cosx]/sinx
=1+limx->0[(e^x)cosx]-(e^x-1)sinx]/cosx
=1+1-0
=2
limx→0 (e^x-1)sinx/1-cosx
=limx→0[ (e^x))sinx+ (e^x-1)cosx]/sinx
=limx->0e^x+limx-0(e^x-1)cosx]/sinx
=1+limx->0[(e^x)cosx]-(e^x-1)sinx]/cosx
=1+1-0
=2