f(x)=2cos^2x+√3sin2x+m
=cos2x+1+√3sin2x+m
=2(1/2cos2x+√3/2sin2x)+m+1
=2sin(2x+π/6)+m+1
所以
(1)f(x)的最小正周期T=2π/2=π;
(2)当x∈[0,∏]时,2x+π/6∈[π/6,13π/6],
sin(2x+π/6)的单调递增区间为2x+π/6∈[π/6,π/2]U[3π/2,13π/6]
即x∈[0,π/6]U[2π/3,π].
f(x)=2cos^2x+√3sin2x+m
=cos2x+1+√3sin2x+m
=2(1/2cos2x+√3/2sin2x)+m+1
=2sin(2x+π/6)+m+1
所以
(1)f(x)的最小正周期T=2π/2=π;
(2)当x∈[0,∏]时,2x+π/6∈[π/6,13π/6],
sin(2x+π/6)的单调递增区间为2x+π/6∈[π/6,π/2]U[3π/2,13π/6]
即x∈[0,π/6]U[2π/3,π].