证明:设t=1/(x+1).则(x^2-6x+5)/(x^2+2x+1)=12t^2-8t+1=12[t-(1/3)]^2-(1/3)≥-1/3.等号仅当t=1/3时取得.即恒有(x^2-6x+5)/(x^2+2x+1)≥-1/3.等号仅当x=2时取得.
证明:设t=1/(x+1).则(x^2-6x+5)/(x^2+2x+1)=12t^2-8t+1=12[t-(1/3)]^2-(1/3)≥-1/3.等号仅当t=1/3时取得.即恒有(x^2-6x+5)/(x^2+2x+1)≥-1/3.等号仅当x=2时取得.