函数y=f(x)由方程e^y-x-x^2+2y=2确定,求y'求dy/dx
1个回答
方程两边分别对x求导得:
y'e^y-1-2x+2y'=0
移项得:
(e^y+2)y'=2x+1
所以:y'=dy/dx=(2x+1)/(e^y+2)
相关问题
函数y=f(x)由方程e^x-y-x^2+2y=2确定,求y'求dy/dx
设函数y=y(x)由方程y+e^(x+y)=2x确定,求dx/dy
设函数y=f(x)由方程x+y=e^y确定,求dy/dx
y=f(x)由方程xy+e^xy+y=e确定,求dy/dx和d^2y/dx^2
设函数y=y(x)由方程y+e的(x+y)次方=2x所确定,求dy/dx,d^2y/dx^2.
函数y=y(x)由方程e^x - e^y - xy =0 确定, 求dy/dx .
设函数y=f(x)由方程ln(x^2+y)=x^3 y+sinx确定,求dy/dx (x=0)
设函数y=y(x),由方程x'=y'确定,求dy/dx
设函数y=y(x),由x3+y3-2xy2-3x=e确定.求dy/dx
求由方程e^xy+x^2*y-1=0确定的隐函数,y=f(x)的导数dy/dx