M(m,n),半径r
定圆圆心(3,0),R=8,两圆心距离D=R-r=8-r
(m+3)^2+n^2=r^2
(m-3)^2+n^2=(8-r)^2
√[(m-3)^2+n^2]+√[(m+3)^2+n^2]=8...1)
假设√[(m+3)^2+n^2]-√[(m-3)^2+n^2]=t...2)
1)*2):t=3/2
√[(m+3)^2+n^2]-√[(m-3)^2+n^2]=3m/2...3)
1)+3):2√[(m+3)^2+n^2]=8+3m/2)
整理:7m^2+16n^2=112
所以M的轨迹:
椭圆x^2/16+y^2/7=1