f(x)=sin(wx+π/3)sinwx(w>0),
=[(1/2)sinwx+(√3/2)coswx]sinwx
=(1/2)sin²wx+(√3/2)sinwxcoswx
=(1/4)(1-cos2wx)+(√3/4)sin2wx
=(1/2)sin(2wx-π/6)+1/4
f(x+π)=f(x)
所以 f(x)的最周期为 π
则 2π/2|w|=π
得 w=1
f(x)=sin(wx+π/3)sinwx(w>0),
=[(1/2)sinwx+(√3/2)coswx]sinwx
=(1/2)sin²wx+(√3/2)sinwxcoswx
=(1/4)(1-cos2wx)+(√3/4)sin2wx
=(1/2)sin(2wx-π/6)+1/4
f(x+π)=f(x)
所以 f(x)的最周期为 π
则 2π/2|w|=π
得 w=1