1, ∫lnxdx/x =∫lnxdlnx = (lnx)^2/2+C.
2. ∫dx/(sin2x)^2 = ∫(csc2x)^2]dx = (1/2)∫(csc2x)^2]d(2x)
= (-1/2)cot2x+C
3. ∫cosxdx/sinx =∫dsinx/sinx = ln|sinx|+C.
4. ∫dx/(cos2x)^2 = ∫(sec2x)^2]dx = (1/2)∫(sec2x)^2]d(2x)
= (1/2)tan2x+C
1, ∫lnxdx/x =∫lnxdlnx = (lnx)^2/2+C.
2. ∫dx/(sin2x)^2 = ∫(csc2x)^2]dx = (1/2)∫(csc2x)^2]d(2x)
= (-1/2)cot2x+C
3. ∫cosxdx/sinx =∫dsinx/sinx = ln|sinx|+C.
4. ∫dx/(cos2x)^2 = ∫(sec2x)^2]dx = (1/2)∫(sec2x)^2]d(2x)
= (1/2)tan2x+C