∫0→1 xe^-x dx =-∫(0,1)xde^(-x)=-[xe^(-x)(0,1)-∫(0,1)e^(-x)]
=-[e+e^x(0,1)]=1-2e
∫(0→1/2) arcsin xdx =xarcsinx(0,1/2)-∫(0→1/2)x/√(1-x^2)dx
=(1/2)(π/6)+[√(1-x^2)](0,(1/2)=π/12+(√3/2)-1
∫0→1 xe^-x dx =-∫(0,1)xde^(-x)=-[xe^(-x)(0,1)-∫(0,1)e^(-x)]
=-[e+e^x(0,1)]=1-2e
∫(0→1/2) arcsin xdx =xarcsinx(0,1/2)-∫(0→1/2)x/√(1-x^2)dx
=(1/2)(π/6)+[√(1-x^2)](0,(1/2)=π/12+(√3/2)-1