急求一篇二次函数的英文文献有作者,出版社,字数2到3千的 ,长点也没关系.

1个回答

  • 数与方程是初中数学中两个最基本的概念,它们的形式虽然不同,但本质上是相互连接的,有密切关系.如:一元二次方程与二次函数.

    我们知道形如ax2+bx+c=0的方程是一元二次方程,而形式为y= ax2+bx+c(a、b、c为常数,a≠0)是二次函数.它们在形式上几乎相同,差别只是一元二次方程的表达式等于0,而二次函数的表达式等于y.这种形式上的类似使得它们之间的关系格外密切,很多题型都是以此来命题.为什么会这样?主要是因为当二次函数中的变量y取0时,二次函数就变成一元二次方程.由此可见,方程中的很多知识点可以运用在函数中.下面,我们就它们间的具体运用详细的了解一下.

    一、 配方法解方程与二次函数的应用关系

    在解方程的四种方法就有一种用配方法来解方程的.而在二次函数中,我们经常要将一般形式 转化成 的样式,这个转化过程实际上就是对其进行配方,与方程配方相同.

    例1:用配方法解方程

    (1)

    (2)

    (3)

    (4)

    ……

    例2:指出函数 的顶点坐标.

    (5)

    (6)

    (7)

    (8)

    ∴顶点为(-2,-17)

    方程中的(1)、(2)、(3)、(4)四个步骤与函数中的(5)、(6)、(7)、(8)四个步骤的方法是完全一样的.可见,方程与函数密切相关.

    我们通过课本的学习可知;二次函数y= ax2+bx+c(a≠0)的图象与x轴有交点时,交点横坐标的值就是方程ax2+bx+c=0(a≠0)的根.

    二、 一元二次方程根的判别式与二次函数的结合应用

    在二次函数中,当函数与x轴分别有两个交点、一个交点和无交点时,该函数所对应的一元二次方程根的判别式分别是:△>0、△=0和△0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△0,则有两个交点;若△=0,则有一个交点;若△0,所以有两个交点.

    例4:试说明函数y= x2-4x+5,无论x取何值,y>0.

    分析:第一种方法:用配方法将其化成y= (x-2)2 +1的形式来说明.(但如果系数取值不好,该方法就比较麻烦)

    第二种方法:用△来说明,因为△=-40,所以图象开口向上.于是,图象在x轴上方,因此无论x取何值,y>0.

    例5:求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根.

    分析:这道题如果用常规做法,就是证明一元二次方程的△>0的问题.然而本题的判别式△是一个关于m的一元四次多项式,符号不易判断,这就给证明带来了麻烦,若用函数思想分析题意,设f(x)=x2-(m2+m)x+m-2,由于它的开口向上,所以只要找到一个实数x0,使得f(x0) 0, the equation has two unequal real roots; When △ = 0, the equation has two equal real roots; when △ 0, then there are two intersection; if △ = 0, then there is a point of intersection; if △ 0, so there are two intersection.

    Example 4: Explain the function y = x2-4x +5, no matter what value x, y> 0.

    Analysis: The first method: The method with its into y = (x-2) 2 +1 in the form of instructions. (However, if the coefficient is not good, the method was more trouble)

    The second method: use △ to illustrate, as △ =- 4 0, so opening up image. Thus, images in the x-axis side, so no matter what value x, y> 0.

    Example 5: confirmation: whether to take any real number m, the equation x2-(m2 + m) x + m-2 = 0 must have two unequal real roots.

    Analysis: This question if the conventional approach is to prove that quadratic equation of △> 0 problem. However, the question of discriminant △ is a one dollar four times on the m, polynomial, symbolic difficult to determine, which brought trouble to prove, if thought analyze the question with a function, let f (x) = x2-(m2 + m) x + m-2, because it's opening up, so long as to find a real number x0, so f (x0) 0, the equation has two unequal real roots; When △ = 0, the equation has two equal real roots; when △ 0, then there are two intersection; if △ = 0, then there is a point of intersection; if △ 0, so there are two intersection.

    Example 4: Explain the function y = x2-4x +5, no matter what value x, y> 0.

    Analysis: The first method: The method with its into y = (x-2) 2 +1 in the form of instructions. (However, if the coefficient is not good, the method was more trouble)

    The second method: use △ to explain, because △ =- 4 0, so opening up image. Thus, images in the x-axis side, so no matter what value x, y> 0.

    Example 5: confirmation: whether to take any real number m, the equation x2-(m2 + m) x + m-2 = 0 there must be two unequal real roots.

    Analysis: This question if the conventional approach is to prove that quadratic equation of △> 0 problem. However, the question of discriminant △ is a one dollar four times on the m, polynomial, symbolic difficult to determine, which brought trouble to prove, if thought analyze the question with a function, let f (x) = x2-(m2 + m) x + m-2, because it's opening up, so long as to find a real number x0, so f (x0)