f(x)=3x^2+mx+1
f'(x) = 6x+m
f'(-1/3) = -2+m >0
m > 2
f'(x)=0
6x+m=0
x = -m/6
f''(x)=6 (min)
f(-1) = 3-m+1
f(1) = 3+m+1 > f(-1) ( m > 2 )
max f(x) = f(1) = 4+m #
f(x)=3x^2+mx+1
f'(x) = 6x+m
f'(-1/3) = -2+m >0
m > 2
f'(x)=0
6x+m=0
x = -m/6
f''(x)=6 (min)
f(-1) = 3-m+1
f(1) = 3+m+1 > f(-1) ( m > 2 )
max f(x) = f(1) = 4+m #