(n+1/n-1)^n=(1+2/(n-1))^n,令u=2/(n-1). (1+2/(n-1))^n=(1+u)^[(1/u)un],因为(1+u)^(1/u)的极限为e,un=2n/(n-1)的极限为2,所以原极限为e^2.
lim n→无穷 (n+1/n-1)^n求极限
2个回答
相关问题
-
求极限lim(1+2^n+3^n)^1/n.n-->无穷.
-
求极限lim n趋向于无穷(1/n)*√(n+1)(n+2)⋯(n+n)
-
求极限 lim n[ e^2- (1+1/n)^2n] n->无穷
-
求极限,lim(1+n)(1+n^2)(1+n^4)-----(1+n^2n)=?(n趋于无穷)
-
求下列极限 lim n→正无穷(n^2/1+n^2/2.+n^2/n-1) lim n→正无穷[1*2/1+2*3/1+
-
求极限 n趋向于无穷 lim((根号下n^2+1)/(n+1))^n
-
lim(n→无穷){n/(√n^2+1)+(√n^2-1)}的极限
-
求lim(-1+3^n)/2^(n+1)的极限(N趋向正无穷)
-
求极限:lim((2n∧2-3n+1)/n+1)×sin n趋于无穷
-
求极限 Lim(n趋于无穷)(n^(2/3) sinn^2)/(n-1)