解题思路:(1)利用两组角对应相等的两个三角形相似,得到△DCE∽△ACB,再根据相似三角形的性质即可得到结论;
(2)根据相似三角形的判定,得到△BCE∽△ACD,根据已知及相似三角形的对应角相等,即可求得结论.
证明:(1)∵CE⊥CD,
∴∠DCE=∠ACB=90°
又∵∠CDE=∠A
∴△DCE∽△ACB,
∴[CE/CB=
CD
CA];
(2)∵[CE/CB=
CD
CA],
∴[CE/CD=
CB
CA],
∵∠DCE=∠ACB=90°,
∴∠BCE=∠ACD,
∴△BCE∽△ACD,
∴∠CBE=∠A,
∵∠A+∠ABC=90°,
∴∠CBE+∠ABC=90°,
∴∠ABE=90°,
∴AB⊥BE.
点评:
本题考点: 相似三角形的判定与性质.
考点点评: 此题主要考查相似三角形的判定及性质的综合运用.