(x+y)dy+(x-y)dx=0求通解

1个回答

  • ∵(x+y)dy+(x-y)dx=0

    ==>(1+y/x)dy+(1-y/x)dx=0

    设y=xt,则dy=tdx+xdt

    ∴(x+y)dy+(x-y)dx=0

    ==>(1+t)(tdx+xdt)+(1-t)dx=0

    ==>(t²+1)dx+x(t+1)dt=0

    ==>dx/x+(t+1)/(t²+1)dt=0

    ==>ln|x|+∫t/(t²+1)dt+∫1/(t²+1)dt=ln|C| (C是积分常数)

    ==>ln|x|+1/2∫d(t²+1)/(t²+1)+arctant=ln|C|

    ==>ln|x|+1/2ln(t²+1)+arctant=ln|C|

    ==>x√(t²+1)=Ce^(arctant)

    ==>√(x²+y²)=Ce^(arctant) (C是积分常数).