如果λ1不等于λ2,则当k1,k2有且只有一个为0时k1α1+k2α也是A的特征向量.
α1和α2是对应λ1,λ2属于矩阵A的特征向量,当k1,k2满足什么条件时,k1α1+k2α也
1个回答
相关问题
-
A为n阶矩阵,λ1,λ2是A的两个不同的特征值,α1,α2是分别属于A的两个不同特征值的特征向量.若k1+k2仍为特征向
-
矩阵特征值问题设a1,a2是矩阵A对应于特征值λ1,λ2(λ1不等于λ2)的特征向量,当k1,k2满足( )时,k1a1
-
已知λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,求出α2,(A^2)×(α1+α2)线性无关的
-
线性代数问题 1元.设λ1、λ2是n阶矩阵A的两个不同特征值,对应的特征向量分别为α1、α2,试证:c1α1+c2α2(
-
已知集合A={α|α=2kπ+π/3,k属于Z},B=﹛α|α=2﹙k+1﹚+π/3,k属于Z﹜,
-
向量组的线性相关性 若β=(0,k,k^2)能由α1=(1+k,1,1),α2=(1,1+k,1),α3=(1,1,1+
-
设3阶矩阵A有特征值λ1=-1,λ2=λ3=1,对应的特征向量分别为α1=(1,-1,1)T,α2=(1,0,-1)T,
-
若2sinα=1+cosα,α≠kπ(k属于Z),则tan(α/2)=
-
已知向量组α1,α2,α3线性无关,若向量组α1+α2,α2+α3,λα1+α3线性无关,则λ满足_
-
线性代数题(⊙o⊙)多谢!设三阶方阵A有三个不同的特征值λ1λ2λ3.对应的特征向量为α1α2α3 β=α1+α2+α3