例如:求12与18的最大公因数.
12的因数有:1、2、3、4、6、12.
18的因数有:1、2、3、6、9、18.
12与18的公因数有:1、2、3、6.
12与18的最大公因数是6.
这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的.于是又采用了给每个数分别分解质因数的方法.
12=2×2×3
18=2×3×3
12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了.所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数.从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是12与18的最大公因数.
采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公因数和最大公因数.如果把这两个数合在一起短除,则更容易.
从短除中不难看出,12与18都有公因数2和3,它们的乘积2×3=6就是12与18的最大公因数.与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公因数,就是这两个数的公共质因数的连乘积.
实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图1.
在计算多个数的最小公倍数时,对其中任意两个数存在的因数都要算出,其它无此因数的数则原样落下.最后把所有因数和最终剩下每两个都是互质关系(除1以外没有其他公因数)的数连乘即得到最小公倍数.如图2.