若实数列{an}满足ak-1+ak+1≥2ak(k=2,3,…),则称数列{an}为凸数列.

1个回答

  • 解题思路:(Ⅰ)将

    a

    n

    =(

    3

    2

    )

    n

    (n∈

    N

    +

    )

    代入ak+1+ak-1-2ak判定符号,从而确定数列{an}是否是凸数列;

    (Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得ak+1-ak≥ak-ak-1,从而am-an≥(m-n)(an+1-an)则

    a

    m

    a

    n

    m−n

    a

    n+1

    a

    n

    ,同理可得an-ak≤(n-k)(an+1-an)即

    a

    n

    a

    k

    n−k

    a

    n+1

    a

    n

    ,从而证得结论;

    (ii)由

    a

    m

    a

    n

    m−n

    a

    n

    a

    k

    n−k

    得(m-n)ak+(n-k)am≥(m-k)an①,先证

    {

    S

    n

    n

    }

    是凸数列,由①得可得结论.

    (Ⅰ)∵ak+1+ak−1−2ak=(

    3

    2)k+1+(

    3

    2)k−1−2(

    3

    2)k=

    1

    4(

    3

    2)k−1>0,

    ∴数列an=(

    3

    2)n(n∈N+)是凸数列.

    证明(Ⅱ) (i)由ak-1+ak+1≥2ak(k=2,3,…)得

    ak+1-ak≥ak-ak-1am-an=(am-am-1)+(am-1-am-2)+…+(an+1-an)≥(m-n)(an+1-an

    am−an

    m−n≥an+1−an,an-ak=(an-an-1)+(an-1-an-2)+…+(ak+1-ak)≤(n-k)(an-an-1)≤(n-k)(an+1-an

    an−ak

    n−k≤an+1−an,故

    am−an

    m−n≥

    an−ak

    n−k].

    (ii)由

    am−an

    m−n≥

    an−ak

    n−k得(m-n)ak+(n-k)am≥(m-k)an.①

    故先证{

    Sn

    n}是凸数列.

    在(m-n)ak+(n-k)am≥(m-k)an中令m=n+1得ak+(n-k)an+1≥(n+1-k)an,令k=1,2,…,n-1,(n≥2)叠加得Sn−1+

    1

    2n(n−1)an+1≥

    1

    2(n+2)(n−1)an,⇒2Sn-1+n(n-1)(Sn+1-Sn)≥(n+2)(n-1)(Sn-Sn-1

    ⇒n(n+1)Sn−1+n(n−1)Sn+1≥2(n2−1)Sn

    S

    点评:

    本题考点: 数列与不等式的综合;数列的函数特性.

    考点点评: 本题主要考查了数列与不等式的综合,以及新定义和数列的函数特性,同时考查了计算能力,属于难题.