三角形ABC中,求证cosA+cosB+cosC>1

1个回答

  • 三角和差公式:

    ( cosA + cosB )

    = 2 * cos[(A+B)/2] * cos[(A-B)/2]

    ( cosA - cosB )

    = -2 * sin[(A+B)/2] * sin[(A-B)/2]

    倍角公式:

    cosC = cos(pi-A-B) = -cos(A+B)

    = -2 * {cos[(A+B)/2]}^2 + 1

    cosA + cosB + cosC

    = (2 * cos[(A+B)/2] * cos[(A-B)/2]) + (-2 * {cos[(A+B)/2]}^2 + 1)

    = 2 * cos[(A+B)/2] * ( cos[(A-B)/2] - cos[(A+B)/2] ) + 1

    = 2 * sin(C/2) * [ 2 * sin(A/2) * sin(B/2) ] + 1

    = 4 * sin(A/2) * sin(B/2) * sin(C/2) + 1

    因为是锐角三角形,所以0 < A、B、C < π/2

    因此sin(A/2) 、 sin(B/2) 、 sin(C/2) 均大于0

    即 cosA + cosB + cosC > 1