简而言之就是求a/(1+a^2)+b/(1+b^2)+c/(1+c^2)的最大值;
1/(1+a)+1/(1+b)+1/(1+c)的最小值
a/(1+a^2)+b/(1+b^2)+c/(1+c^2)的最大值计算
a/1+a^2≤a/2a(均值不等式)
由此可以得到当a=b=c=1时,最大值3/2;
1/(1+a)+1/(1+b)+1/(1+c)的最小值
利用柯西不等式
[1/(1+a)+1/(1+b)+1/(1+c)]*(a+1+1+b+1+c)≥(1+1+1)^2
1/(1+a)+1/(1+b)+1/(1+c)≥3/2
x=3/2