解题思路:由偶函数性质得:f(|x+2|)=f(x+2),则f(x+2)<5可变为f(|x+2|)<5,代入已知表达式可表示出不等式,先解出|x+2|的范围,再求x范围即可.
因为f(x)为偶函数,所以f(|x+2|)=f(x+2),
则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2-4|x+2|<5,(|x+2|+1)(|x+2|-5)<0,
所以|x+2|<5,解得-7<x<3,
所以不等式f(x+2)<5的解集是(-7,3).
故答案为:(-7,3).
点评:
本题考点: 函数单调性的性质;一元二次不等式的解法.
考点点评: 本题考查函数的奇偶性、一元二次不等式的解法,借助偶函数性质把不等式具体化是解决本题的关键.