数列{an},{bn}的各项均为正数,a1=1,b1=2,且对于任意自然数n, lg bn、lg a(n+1)、lg b

1个回答

  • 由于:

    5^[an],5^[bn],5^[a(n+1)]成等比数列

    则有:

    {5^[bn]}^2=5^[an]*5^[a(n+1)]

    5^[bn^2]=5^[an+a(n+1)]

    则:

    2bn=an+a(n+1) -----(1)

    由于:

    lg[bn],lg[a(n+1)],lg[b(n+1)]成等差数列

    则有:

    2lg[a(n+1)]=lg[bn]+lg[b(n+1)]

    lg[a(n+1)^2]=lg[bn*b(n+1)]

    则:

    [a(n+1)]^2=bn*b(n+1) -----(2)

    则:

    [an]=b(n-1)*bn -----(3)

    由于数列{an}和{bn}各项均为正数

    则由(2)(3)得:

    a(n+1)=sqr[bn*b(n+1)]

    an=sqr[b(n-1)*bn]

    将以上两式代入(1)得:

    2bn=sqr[bn*b(n+1)]+sqr[b(n-1)*bn]

    2[sqrbn]^2=sqr[bn*b(n+1)]+sqr[b(n-1)*bn]

    2sqr[bn]=sqr[b(n+1)]+sqr[b(n-1)]

    设cn=sqr[bn]

    则有:

    2cn=c(n+1)+c(n-1)

    c(n+1)-cn=cn-c(n-1)=.=c1-c1

    c(n+1)-cn=[c2-c1]=sqr(2)/2

    c2-c1=sqr(2)/2

    c3-c2=sqr(2)/2

    c4-c3=sqr(2)/2

    .

    c(n+1)-cn=qr(2)/2

    把上式累加得

    则:cn=c1+(n-1)(sqr(2)/2)因为(以c1=sqr(b1)=sqr(2))

    =(n+1)/sqr(2)

    则:bn=(cn)^2=(n+1)^2/2

    则:an=sqr[b(n-1)*bn]=[n(n+1)]/2