sin^2(x+pie/6)+cos^2(x+pie/3)
=sin^2(x-pie/3)+cos^2(x+pie/3)
=[1-cos(2x-2pie/3)]/2+[1+cos(2x+2pie/3)]/2,这里可以展开.也可以.
=1+[cos(2x+2pie/3)+cos(2x+pie/3)]/2
=1+cos(2x+pie/2)cospie/6/2
=1+√3cos(2x+pie/2)/4
所以最大1+√3/4,最小1-√3/4
sin^2(x+pie/6)+cos^2(x+pie/3)
=sin^2(x-pie/3)+cos^2(x+pie/3)
=[1-cos(2x-2pie/3)]/2+[1+cos(2x+2pie/3)]/2,这里可以展开.也可以.
=1+[cos(2x+2pie/3)+cos(2x+pie/3)]/2
=1+cos(2x+pie/2)cospie/6/2
=1+√3cos(2x+pie/2)/4
所以最大1+√3/4,最小1-√3/4