已知函数f(x)= 1 2 x 2 + 3 2 x,数列{a n }的前n项和为S n ,点(n,S n )(n∈N *

1个回答

  • (1)∵点(n,S n)(n∈N *)均在函数y=f(x)的图象上,

    ∴ S n =

    1

    2 n 2 +

    3

    2 n ,

    ∴当n=1时, a 1 = S 1 =

    1

    2 × 1 2 +

    3

    2 ×1=2 ;

    当n≥2时,a n=S n-S n-1=

    1

    2 n 2 +

    3

    2 n- [

    1

    2 (n-1 ) 2 +

    3

    2 (n-1)]=n+1 .

    当n=1时,也适合上式,

    因此 a n =n+1(n∈ N * ) .

    (2)由(1)可得: b n =

    a n

    2 n-1 =

    n+1

    2 n-1 .

    ∴T n=

    2

    2 0 +

    3

    2 1 +

    4

    2 2 +…+

    n

    2 n-2 +

    n+1

    2 n-1 ,

    1

    2 T n =1+

    3

    2 2 +…+

    n

    2 n-1 +

    n+1

    2 n ,

    两式相减得

    1

    2 T n =2+

    1

    2 +

    1

    2 2 +…+

    1

    2 n-1 -

    n+1

    2 n =1+

    1×(1-

    1

    2 n )

    1-

    1

    2 -

    n+1

    2 n =3 -

    1

    2 n-1 -

    n+1

    2 n

    ∴ T n =6-

    n+3

    2 n-1 .

    (3)证明:由c n=

    a n

    a n+1 +

    a n+1

    a n =

    n+1

    n+2 +

    n+2

    n+1 >2

    n+1

    n+2 •

    n+2

    n+1 =2,

    ∴c 1+c 2+…+c n>2n.

    又c n=

    n+1

    n+2 +

    n+2

    n+1 =2+

    1

    n+1 -

    1

    n+2 ,

    ∴c 1+c 2+…+c n=2n+[(

    1

    2 -

    1

    3 )+(

    1

    3 -

    1

    4 )+…+(

    1

    n+1 -

    1

    n+2 )]=2n+

    1

    2 -

    1

    n+2 <2n+

    1

    2 .

    ∴2n<c 1+c 2+…+c n<2n+

    1

    2 成立.