定义:两个连续函数f(x),g(x)在闭区间[a,b]上都有意义,我们称函数|f(x)-g(x)|在[a,b]上的最大值

1个回答

  • 解题思路:(1)根据定义,构造新函数F(x)=f(x)-g(x)=x3+2x2-4x+5利用导数求出函数的单调区间,判断出函数在闭区间[-3,2]上的最大值与最小值,取其绝对值较大者即为要求的绝对值差.

    (2)本题已知绝对值差是2,故要利用导数求出F(x)=f(x)-g(x)=ln(x2+1)+2k-x-k=ln(x2+1)-x+k的最大值与最小值,由于不知那一个的绝对值最大,故可以讨论在那个端点处取到绝对值差,建立方程,求出参数的值即可.

    (1)令F(x)=f(x)-g(x)=2x3+x-5-(x3-2x2+5x-10)=x3+2x2-4x+5

    F'(x)=3x2+4x+4=(3x-2)(x+2)

    令F'(x)=0得x=-2,或x=[2/3]

    令F'(x)>0得x>[2/3]或x<-2,

    令F'(x)<0得-2<x<[2/3]

    故F(x)在(-3,-2)上增,在(-2,[2/3])上减,在([2/3],2)增

    又F(-3)=8,F(-2)=13,F([2/3])=[95/27],F(2)=13

    ∴绝对差等于13

    (2)令F(x)=f(x)-g(x)=ln(x2+1)+2k-x-k=ln(x2+1)-x+k

    ∴F'(x)=

    2x

    x2+1−1=

    −(x−1)2

    x2+1≤0

    F(x)闭区间[-1,1]上是减函数,故F(1)≤F(x)≤F(-1)

    故ln2+1+k=2或ln2-1+k=-2

    解得k=1-ln2,或k=-1-ln2

    点评:

    本题考点: 利用导数研究函数的极值.

    考点点评: 本题考点是利用导数研究函数的极值,本题出题方式新颖,组合思路巧妙,考查了对新定义的理解能力与利用导数求最值的能力.