卡诺重心定理以及莱布尼兹公式卡诺重心定理:G为三角形ABC的重心,P为三角形ABC所在平面上任意一点.求证:PA^2+P

2个回答

  • GA^2 + PG^2 = PA^2 + 2GA*PGcos(AGP)

    GB^2 + PG^2 = PB^2 + 2GB*PGcos(BGP)

    GC^2 + PG^2 = PC^2 + 2GC*PGcos(CGP)

    GA^2 + GB^2 + GC^2 + 3PG^2 = PA^2 + PB^2 + PC^2 + 2PG[GA*cos(AGP) + GB*cos(BGP) + GC*cos(CGP)]

    延长射线AG,交BC于D,继续延长,使得GD = DE = AG/2.

    连接EB,EC,

    四边形GBEC为平行四边形.

    EB = GC

    延长射线PG,

    过点B作PG的延长线的垂线,垂足为F.

    过点E作PG的延长线的垂线,垂足为H.

    BE与PG的延长线的交点为点Q.

    则,因GC//BE,角CGP = 角EQG = 角BQF

    GH = GE*cos(EGH) = GA*cos(AGP)

    HF = EB*cos(BQF) = GC*cos(EQG) = GC*cos(CGP)

    GH + HF = GF = GB*cos(BGF) = GB*cos(PI-BGP) = -GB*cos(BGP),

    因此,

    GA*cos(AGP) + GB*cos(BGP) + GC*cos(CGP) = 0,

    GA^2 + GB^2 + GC^2 + 3PG^2

    = PA^2 + PB^2 + PC^2 + 2PG[GA*cos(AGP) + GB*cos(BGP) + GC*cos(CGP)]

    = PA^2 + PB^2 + PC^2

    利用上面的结论,

    令P与A重合,有

    GA^2 + GB^2 + GC^2 + 3GA^2

    = AB^2 + AC^2 ...(1)

    令P与B重合,有

    GA^2 + GB^2 + GC^2 + 3GB^2

    = AB^2 + BC^2 ...(2)

    令P与C重合,有

    GA^2 + GB^2 + GC^2 + 3GC^2

    = BC^2 + AC^2 ...(3)

    (1),(2),(3)相加,有

    3[GA^2 + GB^2 + GC^2] + 3[GA^2 + GB^2 + GC^2] = 2[AB^2 + BC^2 + AC^2],

    GA^2 + GB^2 + GC^2 = [AB^2 + BC^2 + AC^2]/3 = (a^2 + b^2 + c^2)/3.

    证毕.