本题中,可以另 (72k^2-96k+32)/(k^2-4k)=m
72k^2-96k+32 = m(k^2-4k) = mk^2-4mk
(72-m)k^2 - (96-4m)k + 32 =0
(72-m)k^2 - 4 (24-m)k + 32 =0
判别式△ = {4(24-m)}^2 - 4(72-m)*32 ≥ 0
两边同除以16:
(24-m)^2 -8 (72-m) ≥ 0
576-48m+m^2-576+8m≥0
m^2-40m≥0
m(m-40)≥0
m≤0,或m≥40
即值域(-∞,0】,【40,+∞)