因为sin(4分之π-x)等于13分之5,即sin(π/4-x)=5/13
cos(x-π/4+π/2)=-sin(x-π/4)=sin(π/4-x)=5/13
cos[2(x+π/4)]=-sin2x=2cos^2(x+π/4)-1=2*(5/13)^2-1,sin2x=119/169,2x=arcsin(119/169)
cos(4分之π+x)分之2x=13arcsin(119/169)/5
因为sin(4分之π-x)等于13分之5,即sin(π/4-x)=5/13
cos(x-π/4+π/2)=-sin(x-π/4)=sin(π/4-x)=5/13
cos[2(x+π/4)]=-sin2x=2cos^2(x+π/4)-1=2*(5/13)^2-1,sin2x=119/169,2x=arcsin(119/169)
cos(4分之π+x)分之2x=13arcsin(119/169)/5