(1)∵k是非零整数,
∴△=[-(4k+1)] 2-4k(3k+3)=16k 2+8k+1-12k 2-12k=4k 2-4k+1=(2k-1) 2>0,
∴方程有两个不相等的实数根;
(2)∵x 1+x 2=
4k+1
k ,x 1•x 2=
3k+3
k ,
∴(x 1-x 2) 2=(x 1+x 2) 2-4x 1•x 2=
(4k+1 ) 2
k 2 -
12k+12
k =
(2k-1 ) 2
k 2 =(2-
1
k ) 2,
∵k为整数,
∴2-
1
k >0,
而x 1<x 2,
∴x 2-x 1=2-
1
k ,
∴y=2-
1
k -2
=-
1
k (k≠0的整数),
∴y是变量k的函数.